Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)
نویسندگان
چکیده
We discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module. Let A be a Banach algebra and X a Banach A-module, f : X → X and g : A → A. The mappings Δ1 f,g , Δ2 f,g , Δ3 f,g , and Δ4 f,g are defined and it is proved that if ‖Δ1 f,g x, y, z,w ‖ resp., ‖Δ3 f,g x, y, z,w, α, β ‖ is dominated by φ x, y, z,w , then f is a generalized resp., linear module-A left derivation and g is a resp., linear module-X left derivation. It is also shown that if ‖Δ2 f,g x, y, z,w ‖ resp., ‖Δ4 f,g x, y, z,w, α, β ‖ is dominated by φ x, y, z,w , then f is a generalized resp., linear module-A derivation and g is a resp., linear module-X derivation.
منابع مشابه
MODULE GENERALIZED DERIVATIONS ON TRIANGULAUR BANACH ALGEBRAS
Let $A_1$, $A_2$ be unital Banach algebras and $X$ be an $A_1$-$A_2$- module. Applying the concept of module maps, (inner) modulegeneralized derivations and generalized first cohomology groups, wepresent several results concerning the relations between modulegeneralized derivations from $A_i$ into the dual space $A^*_i$ (for$i=1,2$) and such derivations from the triangular Banach algebraof t...
متن کاملSuperstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (ii)
In this paper, we introduce and discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module.
متن کاملArens regularity and derivations of Hilbert modules with the certain product
Let $A$ be a $C^*$-algebra and $E$ be a left Hilbert $A$-module. In this paper we define a product on $E$ that making it into a Banach algebra and show that under the certain conditions $E$ is Arens regular. We also study the relationship between derivations of $A$ and $E$.
متن کاملLie ternary $(sigma,tau,xi)$--derivations on Banach ternary algebras
Let $A$ be a Banach ternary algebra over a scalar field $Bbb R$ or $Bbb C$ and $X$ be a ternary Banach $A$--module. Let $sigma,tau$ and $xi$ be linear mappings on $A$, a linear mapping $D:(A,[~]_A)to (X,[~]_X)$ is called a Lie ternary $(sigma,tau,xi)$--derivation, if $$D([a,b,c])=[[D(a)bc]_X]_{(sigma,tau,xi)}-[[D(c)ba]_X]_{(sigma,tau,xi)}$$ for all $a,b,cin A$, where $[abc]_{(sigma,tau,xi)}=ata...
متن کامل